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Review: Lecture 3

m Classical Deterministic Systems
e States, dynamics (transition graphs, adjacency matrices)
e Evolvement

m Probabilistic Systems
e Probabillistic states and doubly stochastic matrices

m Quantum Systems
e Quantum states and unitary matrices

e Comparison of three systems

e Superposition and measurement

2024/4/2 {Quantum Computing) 4



Quantum States

e Quantum superposition states

e Case 1: position on a line

e Case 2: single-particle spin system
(source: QMTM)

e Complex/probability/transition
amplitudes

* keynotes

Lecture 4: Basic Quantum
Theory

Observables & Measuring

® Observable & Measuring

e Classic physics vs. quantum physics
e The principles (source: QMTM)

e Expected value of observing

e Multiple step observing

* keynotes

Dynamics

e The principle (cont.)

¢ Features of quantum dynamics

e Preview of quantum computation
e Schrodinger equation

e keynotes

(BBSARFE 2018 RN ERIFIRIELTURIER 5| S351R)
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Supplementary Material

m Greek alphabet
a B Y o € ¢
Alpha | Beta Gamma |Delta |Epsilon |Zeta
Vv & o} 1 P o)
Nu Xi Omicron | Pi Rho Sigma
n e [ K A M
Eta Theta lota Kappa | Lambda [Mu
T v ¢ X Y w
Tau Upsilon | Phi Chi Psi Omega
RGsASFE 2020 KPRA REIF 5 ELambdait B
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1. Quantum States

m Single photon double slit experiment

azms Lilibil

AW
ﬁ&"ib@ﬁ%ﬁﬂi%iiﬂﬂ’xﬂ%g;ﬁlﬁ

AT AL https://www.bilibili.com/video/BV1ZV411Y7wX?spm_id_from=333.880.my_history.page.click
(RRHSARFE 2018 R FHEIREIFIEELLTIR A | i tHEEIR)
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1. Quantum States

m Single photon double slit experiment

DUALITE
ONDE-PARTICULE
’ particule L
. onde Bit) La»\ : >
N 2
’ 3B]acrtltique BER ““«.,\ 3 P{p
. goslgn%{’enur AR ,\_“{“': ; yyd”"
AREEEERT— RIS (RIRT) - -
BER RNt R FiX— 25t N

P 0004/ 01:56 720P W% ﬁjii O OEE L

AT AL https://www.bilibili.com/video/BV1YW411E7vp/?spm_id_from=333.788.recommend_more_video.0
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1. Quantum States

m Single photon double slit experiment

e Phenomenon: interference fringe (F554) !

e Explanation

> Interference with itself
» But how? Superposition!->Quantum state

2024/4/2 {Quantum Computing)



1. Quantum States

m Case 1: positions on line

X0 X1 e Xi e Xn—1

e Position z; and state |z;> (Dirac ket notation)

e State associated column vectors
> Eg. |x) +— [1,0,....0]7

Ix1) +—[0,1,....0]"

2024/4/2 {Quantum Computing)



1. Quantum States

m Case 1: positions on line

e Superposition _—
> Linear combination [¢> = Y ¢l

1=0

c; € C is complex amplitudes

» Vector representation [¢) = [co, ¢1, =+, €o1]”

el ® [l

||¢>|2:Z|c|2

» Complex amplitudes are probability amplltude if 1)
is normalized

» Observing probability p(z;) =

2024/4/2 {Quantum Computing)



1. Quantum States

m Case 1: positions on line

2024/4/2

Example 4.1.1 Let us assume that the particle can only be at the four points
{x0, X1, X2, x3}. Thus, we are concerned with the state space C*. Let us also assume
that now the state vector is

—3—i

—2i
w=| | (47)
L

2

We shall calculate the probability that our particle can be found at position x,. The
norm of |¢) is given by

) =V =3 —i2+| =22 +|i]2 + |2|? = 4.3589. (4.8)
The probability is therefore
i

{Quantum Computing)
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1. Quantum States

m Case 1: positions on line
e Kets can be added

W) + [¥') = (co + cp)lxo) + (c1 + c)lxt) + - - + (cn1 + €y ) 1Xn—1)
=[co+cy,c1+¢, .., Ch_1 + c;_l]T. (4.13)

e A ket has complex scalar multiplication

clyr) = ccolxo) + cerlx1) + - -+ + ccu1|xn—1) = [cco, ccn, .. ., c:c,,_l]T. (4.14)

e Ket and its complex scalar multiplies describe the
same physical state ([EMZ—T: $HHESHFLEEE)

> A ket's length does not matter as far as physics goes

2024/4/2 {Quantum Computing) 13



1. Quantum States

m Case 2: Single-particle spin system

e Stern-Gerlach experiment

THE SPIN,
A QUANTUM MAGNET

All the animations and explanations on
www.toutestquantique.fr

P 0001/ 01:30

WA AL . https://www.bilibili.com/video/BV1tadyla7fp?from=search&seid=2882474434643948118&spm_id_from=333.337.0.0
2024/4/2 {Quantum Computing) 14



1. Quantum States

m Case 2: Single-particle spin system

e Stern-Gerlach experiment

Magnets

irce of
particles N /
w
(o)
x o
e

Figure 4.3. The Stern-Gerlach experiment.

> Spin is a intrinsic property (RRNE4)
» Discrete spin states (no intermediate)

2024/4/2 {Quantum Computing)
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1. Quantum Stat{- ()

m Case 2: Single-particl1

e Stern-Gerlach experiment (Ste

p1: 0°)

> FEIARTRUEZBIRFBIES RS SCGAEERUT

> FEBFRRUEZ SR FBIESFSS

GAXEEERS L,

RTRI IR A e, = +1, BFRIMIFHEFIE (s

prepared in the state) k7o, = +1

> WRAFIREAZME, SGAERR

FlES A, N

EENERGRERER (XEETRE "HE" )

2024/4/2 {Quantum Computing)
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Apparatus Flipped 180°

z
ﬁ v
1. Quantum States |~
X
[ J
Apparatus
Figure 1.2: The apparatus is flipped without disturbing the
. C a S e 2 S I n g I e pa rt I C I e S p plzgj\'mu.sl} 1111.(mulz£d sptm. A [(I\\ 111(\-11.511::.\1111((‘1:: ull'v:tlLlltsI illtl

=-1.

e Stern-Gerlach experiment (Step 2: 180°)

> WNRGSGANEREIT, BPhed%180°, HAKMEEENISHIAL
FEIBAE(w)) , WHHFHINEER A0, =

2024/4/2 {Quantum Computing) 17



Apparatus Rotated 90°

i |
1. Quantum State{~|(: )59 L.

Apparatus

. Ca Se 2: Si n g Ie -— pa rtic I e E Figure 1.3: The apparatus rotated by 90°. A new measure-

ment results in o, = —1 with 50 percent probability.

e Stern-Gerlach experiment (Step 3: 90°)

> WIRIESGAN ERIEE:90° BAKZE B AIHIFBIERS
(lu)), UMCETFTRYNEZELZSRA50%8=RER 0, = -1,
50%RIH=RSE o, = +1, HAE(EA0

2024/4/2 {Quantum Computing) 18



Apparatus Rotated
by an Arbitrary Angle

1. Quantum States

Apparatu

m Case 2: Single-particle spin | i e wm w w wn w

tl tl plane. i\u rage measurement result is 7 - 1.

e Stern-Gerlach experiment (Step 4 9)
> WNERIGSGANESIEEE 0 BAKNZENEIN BB
(Ju)), LETFRBSNELESREAZEEIA - M (= cos )
> B+ Rig 0=nr/4
{P("‘l) -1+ p(—1):-(—1) =cosm/4
p(+1) +p(-1) =1

- p(+1) = 85.4%, p(—1) = 14.6%
(B13ASR 3 82020 AR HF 4R E M IO fa B 5 2 B S 12iR)

2024/4/2 {Quantum Computing) 19



1. Quantum States

m Case 2: Single-particle spin system

e Superposition in the vertical axis

2024/4/2

|¢> :CO|T> +Cl|\L>

Example 4.1.4 Consider a particle whose spin is described by the ket

W) =@ —4)| 1)+ (T +2i) ). (4.25)
The length of the ket is
VI3 — 4i2 + |7+ 2i|? = 8.8318. (4.26)

Therefore, the probability of detecting the spin of the particle in the up direction is
3 —4i> 25

= = —. 4.27
p(1) 8.8318% 78 (4.27)
The probability of detecting the spin of the particle in state down is
17+2i> 53
= =, 4.28
P = o31g? ~ 78 (4.28)
O

{Quantum Computing)
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1. Quantum States

m Case 2: Single-particle spin system

e Representing spin states
V) =aulu) +aqld)

> o, = Culy) and a,= <{d|yp) are probability amplitudes

p(u) =afa, = {Pluy {ulyh)
> 1p(d) =aja,= {Pld) {d|) are observing probability

oo, +taja;, =1

(R N L& 5e F Al 20202R (0] Z 42 5] 45 IE b 53 5 T (u ) Ry |[u) SeFR AU 35 1R)

2024/4/2 {Quantum Computing) 21



1. Quantum States

m Case 2: Single-particle spin system

2024/4/2

Representing spin states (along the x-axis)

recall from Lecture 1, if A initially prepares |r), and is then

rotated to measure o.., there will be equal probabilities for

up and down. Thus, aj o, and ajay must both be equal to

%. A simple vector that satisfies this rule is

1
) = E'“> \/—\GD (2.5)

(r|l) =0

[) u
(E|-r)—0»| \f‘ f”

{Quantum Computing)

22



1. Quantum States

m Case 2: Single-particle spin system

e Representing spin states (along the y-axis)

{i|o) = 0
1
Olyuloy = 5| [telrtrloy = 5
N S
oo = 5| |emwa = 2f T BT A
S . S TR
(o)) = 5| | @l = 3 o) = EM_EH
aai = 5| | ey = 3
’ET’;]I probabilities ) [ Equal probabilities |
| forupand down ) for left and right )

2024/4/2 {Quantum Computing) 23



1. Quantum States

m Case 2: Single-particle spin system

e Inner product
» Geometric view: overlap
» Physical view: transition amplitude

In Chapter 2, the inner product was introduced as an abstract mathematical
idea. This product turned a vector space into a space with a geometry: angles, or-

thogonality, and distance were added to the canvas. Let us now investigate its
physical meaning. The inner product of the state space gives us a tool to com-
pute complex numbers known as transition amplitudes, which in turn will enable
us to determine how likely the state of the system before a specific measurement

(start state), will change to another (end state), after measurement has been carried

out. Let

2024/4/2 {Quantum Computing)
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1. Quantum States

m Case 2: Single-particle spin system

e Recipe of computing transition amplitude
|¢> — [007cl7u°7cn—1:|T — |¢’> — I:C(l)aclla'uac'rlt—l:lT

> Start (hormalized) state is [¥> = [co,c1, " ¢n1] "
> End state is the bra vector <'| =[¢"> "= cici,rcr1)
» Transition amplitude is their matrix multiplication

Co
—1
< ' e A ' 1 _ \ N
"7b | Qp> — [ C0,C1y """ yCp—1 . - Zci ><Cz'
: i=0
_Cn—l_

(ROBARRZEE 2018 FRIERIF 5 E Ik T1 X FbraSket ARRRIEIR, NiZEbra—c—ket®R R IES)
(RHEARFE 2018 R B HRIFIEIELTlend stateEEFE = E (BirA1) BRIOBSEIR)
(RBEARFE 20208 ERTRIFIRIELL TlbramEE N RMIRN A1 B EHEIR)

2024/4/2 {Quantum Computing) 25



1. Quantum States

m Case 2: Single-particle spin system

e Transition amplitude=0 <-> orthogonal

e Orthogonal states are mutually exclusive
» There are linear independent <-> basis

Note: The transition amplitude between two states may be zero. In fact, that hap-
pens precisely when the two states are orthogonal to one another. This simple fact
hints at the physical content of orthogonality: orthogonal states are as far apart as

they can possibly be. We can think of them as mutually exclusive alternatives: for
instance, an electron can be in an arbitrary superposition of spin up and down, but
after we measure it in the z direction, it will always be either up or down, never
both up and down. If our electron was already in the up state before the z di-
rection measurement, it will never transition to the down state as a result of the
measurement.

2024/4/2 {Quantum Computing)
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1. Quantum States

m Case 2: Single-particle spin system

e Transition amplitude as complex/probability

amplitude
We can express |{) in the basis {|by), |b1), ..., |b,—1)} as
[¥) = bolbo) + b11b1) + - - - + bu—1|bn—1). (4.33)

We invite you to check that b; = (b;|v) and that |by|?> + |b1|> + - - - + |bp1]? = 1.
It is thus natural to read Equation (4.33) in the following way: each |b;|? is the
probability of ending up in state |b;) after a measurement has been made.

2024/4/2 {Quantum Computing) 27



1. Quantum States

m Case 2: Single-particle spin system

Example 4.1.7 Let us calculate the amplitude of the transition from |v) = [1, —i]7

to |¢) = [i, 1]7. Both vectors have norm ~/2.
We can take their inner product first:

(ply) = [—i, 1][1, —i]" = —-2i.
and then divide it by the product of their norm:

=
V2xV2

—I.

Equivalently, we can first normalize them, and then take their product:

o) ) 2T -

— | —=Y)=|—, —=|| —=, —=| =-—I.

V2T N2 V2 V21LV2 V2

The result is, of course, the same. We can concisely indicate it as

(@1¥)

o) 1Y)l

2024/4/2 {Quantum Computing)
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(4.39)

(4.40)
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1. Quantum States

m Keynotes

2024/4/2

We have learned to associate a vector space to a quantum system.
The dimension of this space reflects the amount of basic states of
the system

States can be superposed, by adding their representing vectors

A state is left unchanged if its representing vector is multiplied by
a complex scalar

The state space has a geometry, given by its inner product. This
geometry has a physical meaning: it tells us the likelihood for a
given state to transition into another one after being measured.
States that are orthogonal to one another are mutually exclusive

{Quantum Computing) 29



Review: Lecture 4 (first half)

m Basic Quantum Theory

1.

2024/4/2

Quantum States

>

YV V V VY

Superposition, linear combination
Complex/probability amplitude

Ket vector

Stern-Gerlach experiment, spin states in x/y/z axis
transition amplitude, bra vector

{Quantum Computing)

Case 1

} Case 2
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2. Observables and measuring

m Specification of a physical system
e State space: the collection of all states
e Observable set: the physical quantities that can be
observed in each state
m Observable
e A specific question we pose to the system
m Measuring

e the process consisting of asking a specific question
and receiving a definite answer

2024/4/2 {Quantum Computing)



2. Observables and measuring

m Classic physics

the act of measuring would leave the system in whatever state it
already was, at least in principle

the result of a measurement on a well-defined state is predictable,
l.e., if we know the state with absolute certainty, we can anticipate
the value of the observable on that state

m Quantum physics

2024/4/2

systems do get perturbed and modified as a result of measuring
them

only the probability of observing specific values can be calculated:
measurement is inherently a nondeterministic process

{Quantum Computing) 32



2. Observables and measuring

m Principle 1
e The observable or measurable quantities of
quantum mechanics are represented by linear

operators €.

> |In fact, 2 must also be Hermitian (see it later)

at these facts. It implies that each observable (o,, o,, and

"
0.) is_identified with a specific linear operator in the two-

dimensional space of states describing the spin.

2024/4/2 {Quantum Computing) 33



2. Observables and measuring

m Principle 2
e The possible results of a measurement are the

eigenvalues of the operator that represents the
observable.

e The collapsed state is the related eigenvector of
the operator that represents the observable

e If the system is in the eigenstate|)), the result
of a measurement is guaranteed to be X .

2024/4/2 {Quantum Computing) 34



2. Observables and measuring

m Principle 3
e Unambiguously distinguishable states are

represented by orthogonal vectors.

» Inner product of two states is a measure of the
inability to distinguish them with certainty

Principle 3 is the most interesting. At least I find it so. It
speaks of unambiguously distinct states, a key idea that we

have already encountered. T'wo states are physically distinct

if there is a measurement that can tell them apart without

ambiguity. For example, |u) and |d) can be distinguished by

2024/4/2 {Quantum Computing) 35



2. Observables and measuring

m Observable operator must be Hermitian

e Reason 1: since the result of an experiment must
be a real number, the eigenvalues of an operator O
must also be real

e Reason 2: the eigenvectors that represent
unambiguously distinguishable results must have
different eigenvalues, and must also be orthogonal.

e These conditions are sufficient to prove that ©
must be Hermitian (try to prove it! Bonus!)

2024/4/2 {Quantum Computing)



2. Observables and measuring

m Case 1: positions on line

e Observable is position P

e P's operator

xp 0 --- 0 . . s
<—Principle 1: observable is Hermitian
0 x 0 0 Principle 2: eigen-value and —vector
P = . . ] ) Principle 3: exclusive states are orthogonal

[0 0 0 X \

e Posijtion z; and state |z,> (Dirac ket notation)

e Pacts on basic states \"

e State associated column vectors
> Eg. |xo) — [1,0,....0]7

P(|£BZ>) :IIZz|337J> lx;) —[0.1,....0]7

2024/4/2 {Quantum Computing) 37



2. Observables and measuring

m Case 2: Single-particle spin system

e z-axis spin operator o,

(o.lu) = |u)
{old) = —|d) W <
\ (uld) =0

Principles 2 and 3

2024/4/2

o 6= () (1)
oo o ) (V) =-(3) o

Eigenvectors and their eigenvalues Hermitian operator

{Quantum Computing)



2. Observables and measuring

m Case 2: Single-particle spin system

e X-axis spin operator o,
1
S ( 0 1 ) 1) = 7\ ) — EW)-
| 1 0 ) |
) = —=lu) + —=ld)
L V2 V2
® Yy-axis spin operator o,
) = L Uu L .
[;ry o ] 0 1 i
o) = Ef’“—) - E d)

2024/4/2 {Quantum Computing)



2. Observables and measuring

m Some truths about operator

e Operators are the things we use to calculate
eigenvalues and eigenvectors

e Operators act on state-vectors (which are
abstract mathematical objects), not on actual
physical systems

e When an operator acts on a state-vector, it
produces a new state-vector

2024/4/2 {Quantum Computing)



2. Observables and measuring

m A common misconception about the operator

e When a measurement operator acts on a state-
vector, it produces a new state-vector, but that
operation is in no way the same as acting on the
state with the operator

» The latter means a state transition ¥|)\)

> The former means a state collapse ©|)\)> (only valid

when |\) is the eigenvector of )

RRGSAS FE20202% FIRIREF 5 E EEAL “then” —> “the” WP EEIR
2024/4/2 {Quantum Computing) 41



2. Observables and measuring

m A common misconception about the operator

e Example

) + o.|r) = (3.21)

1 1
) = 7 \/_\d E\u} - \/E\d)

» Observation will not leave the system in superposition,

the measurement result is either +1 in|u) or -1 in|d)

» The above result allows us to calculate the probabilities

of each possible outcome of the measurement

2024/4/2 {Quantum Computing)



2. Observables and measuring

m Principle 4
o If [¢¥) is the state-vector of a system, and the
observable © is measured, the probability to

observe value )\, is
p(X) = [y [ 2= {blAy <Ailv)

But, in general, there is no way to tell for certain which of

these values will be observed. There is only a probability—
let us call it P(\;)—that the outcome will be A;. Principle 4
tells us how to calculate that probability, and it is expressed

in terms of the overlap of |A) and |)\;). More precisely, the

2024/4/2 {Quantum Computing) 43



2. Observables and measuring

m The expected value of observing
€y = QYY) = Y, Q)

This postulate states the following: suppose that

A0y Ay e es A (4.60)

. : . _|. Principle 2
is the list of eigenvalues of 2. Let us prepare our quantum system so that it\4s 1n

state [Y) and let us observe the value of 2. We are going to obtain one or another
of the aforementioned eigenvalues. Now, let us start all over again many times, say,
n times, and let us keep track of what was observed each time. At the end of our
experiment, the eigenvalue A; has been seen p; times, where 0 < p; < n (in statistical
jargon, its frequency is p;/n). Now perform the calculation

P1 Pn—1

B x B % : (4.61)
n

n n

}\.OX

If n is sufficiently large, this number (known in statistics as the estimated expected
value of ) will be very close to (Qyr, V).

2024/4/2 {Quantum Computing) 44



2. Observables and measuring

m Proof sketch

Hh R > e L T- ) B vﬁﬁ'ﬁ?‘l Iv,)’v"iq;a l(V,IS‘Hx,MIfI)\

15 Rt | vy

iR 2 R R TR X 0, sak adgere iy, %)
*&HNyQILTdIU&J, EETEy X.ﬁ%’ﬂiéﬂ’? I<viigs)®
. )Z i e

I<va)¢gs)>
© et i A st e x,

lewjys £ @,

@, RN IEOK 3 Bt de BT 6] T wpaig
B (WsTndrh (¥d=cylf

BB 7143037 Wi 2 T
J2Ig> ?.)7.[<V,IU')~IV,> t <ul@s-

¢>-1V> + <Ulgsin
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2. Observables and measuring

m Proof sketch

{{ajb QLW L B ‘)\,,}u' N};m)*_ ]q),!l/z)

OV

AL BP0 & YO Fe LT B TR TR :’a-[ Iv,)“v’ﬂﬁ%ﬁ [(V,u,t”’,,mw;ﬁ)\'
lvmc’v’fd«’g_}.a’a BATNE

\

P i g 2 ARG i1 X, 2, Sk s Mievedh v, T
*éﬂlw>ﬁ&7dnm,, 3 0K x'r’«aﬂlp}h [<viigs)?

i . .~ )‘l LR [<V2’(P>'L
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2. Observables and measuring

m Proof sketch

@, g RNEHie T 3;&1%%@@31_ o T
B 0T (832 <ules (s + <ifpsivs
BB 9314517 i R Fif e
BB = <y

UMv> + <ves. [1S]

Bormm | W PO G @27 [ , f
1 = ¢ 3
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2. Observables and measuring

m Proof sketch

2024/4/2 {Quantum Computing) 48



2. Observables and measuring

m The expected value of observing

Example 4.2.4 Let us calculate the expected value of the position operator on an
arbitrary normalized state vector: let

1Y) = colxo) + cilxq) + -+ cpt|Xn—1) (4.62)

be our state vector and

(PY, ¥) = |col* x X0+ lc1]* x x1 + -+ + |cnt1]* X Xpet, (4.63)
where remember: P(|z,)) =z:|z,)
lcol* + ler” 4+ -+ + [ena P = 1. (4.64)

In particular, if |) happens to be just |x;), we simply get x; (verify it!). In other
words, the expected value of position on any of its eigenvectors |x;) is the corre-
sponding position x; on the line. ]

2024/4/2 {Quantum Computing)



2. Observables and measuring

m The expected value of observing

Example 4.2.5 Let |¢/) = [*f ﬂ] andQ_[T 2‘].
Let us calculate Q(|v)):
1 —i || 2 V2
Q) = 5 l= . (4.65)
P2 || L 2V2i

The bra associated with Q) is [\/i 2i ] The scalar product (Qyr|yr), i.e.
the average value of €2 on |¢), 1s thus equal to
(4.66)

[f W‘z] [— —2;] ~25.

50

{Quantum Computing)
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2. Observables and measuring

m What happens after measuring?
e Get an answer )\, with probability p, = (¢|\.) (\]9)

e The system transitions to the corresponding
eigenvector |4,

A2 A
A

— 19> 124 x
Mgy

Q Q'

2024/4/2 {Quantum Computing)



2. Observables and measuring

m What happens after measuring?
e Get an answer 1
e The system transitions to the corresponding
eigenvector 4>

m What is going to happen if we conduct the
same measurement immediately thereafter?

e Exactly the same answer, and stay where it is
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2. Observables and measuring

m How about multiple observing?

e Order matters

m Experiment: light passing through

polarization sheet

2024/4/2

Li waves vibrate
in any direction y
,“ h

Polarized light

g Light source

Kaidor / CC BY-3.0 with annotations by the author
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2. Observables and measuring

m How about multiple observing?

e Order matters

m Experiment: light passing through

polarization sheet

A A
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2. Observables and measuring

m Keynotes

2024/4/2

Observables are represented by Hermitian operators. The result of
an observation is always an eigenvalue of the Hermitian.

The end state of the measurement of an observable is always one
of its eigenvectors

The probability for an initial state to collapse into an eigenvector
of the observable is given by the length squared of the projection

The expression{£2) , represents the expected value of observing
on |4

When we measure several observables, the order of
measurements matters (because observation will change the state)
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3. Dynamics

m Principle 5
e The evolution of a quantum system (that is not
a measurement) is given by a unitary operator

or transformation
> |Y(t+1)) =Ulyp(t))
/

™

State of the State of the
system at time t+1 system at time t

a unitary matrix that
represents a unitary operator
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3. Dynamics

m Features

An important feature of unitary transformations 1s that they are closed under
composition and inverse, i.e., the product of two arbitrary unitary matrices is uni-
tary, and the inverse of a unitary transformation is also unitary. Finally, there is a
multiplicative identity, namely, the identity operator itself (which is trivially uni-
tary). In math jargon, one says that the set of unitary transformations constitutes a
group of transformations with respect to composition.

2024/4/2 {Quantum Computing)
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3. Dynamics

m The process of quantum computing

e Prepare an initial state ¢

e Apply a sequence of unitary operators to the state

Ufn]
—_—

U]

U]
—_—

V)

U]t

—

==

Ufto]1yr)

Ultr]Ufto]lr)

Ufn ]t

—

U[ty—1]U[tn—2] - - - Ut0][¥).

—-_—

Ul ][t JUlto] 1)

[

Ue]t

(4.94)

e Measure the output and get a final state

2024/4/2
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3. Dynamics

m Schrédinger equation

Bt +8)) — @)y 2m
5 =i |y (D))

e J is the Hamiltonian of the system

of an isolated system is preserved throughout its evolution.'* Energy is an observ-

able, and therefore for a concrete quantum system it 1s possible to write down a
hermitian matrix representing it (this expression will of course vary from system to
system). This observable is called the hamiltonian of the system, indicated by H in
Equation (4.96).

The Schrodinger equation states that the rate of variation of the state vector
| (t)) with respect to time at the instant ¢ is equal (up to the scalar factor ET’T) to
|v (1)) multiplied by the operator —i % H. By solving the equation with some initial
conditions one is able to determine the evolution of the system over time.
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3. Dynamics

m Keynotes
e Quantum dynamics is given by unitary transformations
e Unitary transformations are invertible; thus, all closed

system dynamics are reversible in time (as long as no

measurement is involved)

e The concrete dynamics is given by the Schrodinger
equation, which determines the evolution of a quantum

system whenever its Hamiltonian is specified
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Conclusion

1. Quantum States
» Complex/probability/transition amplitudes

2. Observables & Measuring
» The observables are represented by Hermitian matrices

> The possible results of a measurement are the eigenvalues of the
observable matrices. If the system is in the eigenstate, the measurement
result is guaranteed to be the related eigenvalue

» Unambiguously distinguishable states are represented by orthogonal
vectors

» Observing probability is the modulus square of the probability amplitude

3. Dynamics
» The evolution of a quantum system is given by a unitary matrix
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