
预习通知

◼ QMTM（前四章）

⚫ Systems and Experiments 

⚫ Quantum States

⚫ Principles of Quantum Mechanics 

⚫ Time and Change
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预习通知

◼ 后科普视频
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视频链接：https://space.bilibili.com/274326003
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Review: Lecture 3

◼ Classical Deterministic Systems

⚫ States, dynamics (transition graphs, adjacency matrices)

⚫ Evolvement 

◼ Probabilistic Systems

⚫ Probabilistic states and doubly stochastic matrices

◼ Quantum Systems

⚫ Quantum states and unitary matrices

⚫ Comparison of three systems

⚫ Superposition and measurement
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Lecture 4: Basic Quantum 
Theory
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Quantum States

• Quantum superposition states

• Case 1: position on a line

• Case 2: single-particle spin system 
(source: QMTM)

• Complex/probability/transition 
amplitudes

• keynotes 

1
Observables & Measuring

• Observable & Measuring

• Classic physics vs. quantum physics

• The principles (source: QMTM)

• Expected value of observing

• Multiple step observing

• keynotes

2

Dynamics

• The principle (cont.)

• Features of quantum dynamics

• Preview of quantum computation

• Schrödinger equation

• keynotes

3

(感谢弘毅学堂 2018级宋文卓同学指正此页课程索引号错误)



Supplementary Material

◼ Greek alphabet
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感谢弘毅学堂 2020 级陈胤良同学指出Lambda拼写错误



1. Quantum States

◼ Single photon double slit experiment
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(感谢弘毅学堂 2018级李梓源同学指正此页单词slit拼写错误)

视频出处：https://www.bilibili.com/video/BV1ZV411Y7wX?spm_id_from=333.880.my_history.page.click



1. Quantum States

◼ Single photon double slit experiment
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视频出处：https://www.bilibili.com/video/BV1YW411E7vp/?spm_id_from=333.788.recommend_more_video.0



1. Quantum States

◼ Single photon double slit experiment

⚫ Phenomenon: interference fringe（干涉条纹）!!

⚫ Explanation

➢ Interference with itself

➢ But how? Superposition!->Quantum state
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1. Quantum States

◼ Case 1: positions on line

⚫ Position    and state       (Dirac ket notation)

⚫ State associated column vectors

➢ E.g. 
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1. Quantum States

◼ Case 1: positions on line

⚫ Superposition
➢ Linear combination

 is complex amplitudes

➢ Vector representation

➢ Observing probability

➢ Complex amplitudes are probability amplitude if      
is normalized 
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1. Quantum States

◼ Case 1: positions on line
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1. Quantum States

◼ Case 1: positions on line

⚫ Kets can be added

⚫ A ket has complex scalar multiplication

⚫ Ket and its complex scalar multiplies describe the 

same physical state （回忆一下：特征值与特征向量）

➢ A ket's length does not matter as far as physics goes
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment
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视频出处：https://www.bilibili.com/video/BV1ta4y1a7fp?from=search&seid=2882474434643948118&spm_id_from=333.337.0.0



1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment

➢ Spin is a intrinsic property （内禀性）

➢ Discrete spin states (no intermediate)
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment （Step 1：0o）

➢ 子图A表示测量之前粒子自旋方向与SGA仪器摆放方位

➢ 子图B表示测量之后粒子自旋方向与SGA仪器摆放方位，

此时粒子观测为𝜎𝑧 = +1，也称为粒子被制备为 (is 

prepared in the state) 状态𝜎𝑧 = +1

➢ 如果粒子状态不受扰动，SGA仪器保持测量方位不变，则

后续测量会得到相同结果（这解释了前面的“制备” ）
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment （Step 2：180o）

➢ 如果将SGA仪器倒放，即旋转180o，且不改变已测得的粒

子自旋状态(| ۧ𝑢 ) ，此时新的测量结果为𝜎𝑧 = −1
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment （Step 3：90o）

➢ 如果将SGA仪器旋转90o且不改变已测得的粒子自旋状态

(| ۧ𝑢 )，此时新的测量结果为50%的概率得到𝜎𝑧 = −1，

50%的概率得到𝜎𝑧 = +1，期望值为0
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Stern-Gerlach experiment （Step 4：𝜃）

➢ 如果将SGA仪器旋转 𝜃 且不改变已测得的粒子自旋状态

(| ۧ𝑢 )，此时新的测量结果期望值为 ො𝑛 ∙ ෝ𝑚 (= cos 𝜃)

➢ 例子：假设 𝜃=𝜋/4

ቊ
𝑝 +1 ∙ 1 + 𝑝 −1 ∙ −1 = cos 𝜋/4

𝑝 +1 + 𝑝 −1 = 1

→ 𝑝 +1 = 85.4%, 𝑝 −1 = 14.6%
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(感谢弘毅学堂2020级郑颖灏同学指正此页𝜃角度符号书写错误)



1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Superposition in the vertical axis
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Representing spin states

➢ are probability amplitudes

➢ are observing probability
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(感谢人工智能专业2020级何姜杉同学指正此页关于 𝑢 𝜓 和 𝜓 𝑢 乘积的顺序错误)



1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Representing spin states (along the x-axis)
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Representing spin states (along the y-axis)
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Equal probabilities 
for up and down

Equal probabilities 
for left and right



1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Inner product

➢ Geometric view: overlap 

➢ Physical view: transition amplitude
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Recipe of computing transition amplitude

➢ Start (normalized) state is 

➢ End state is the bra vector 

➢ Transition amplitude is their matrix multiplication
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(感谢弘毅学堂 2018级魏瑄同学指正此页关于bra与ket的解释错误，应该是bra-c-ket表示括号)

(感谢弘毅学堂 2018级包云开同学指正此页end state向量第二个元素（脚标为1）遗漏的书写错误)

(感谢弘毅学堂 2020级王康宁同学指正此页bra向量第二个元素脚标应为1的书写错误)



1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Transition amplitude=0 <-> orthogonal

⚫ Orthogonal states are mutually exclusive

➢ There are linear independent <-> basis
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1. Quantum States

◼ Case 2: Single-particle spin system

⚫ Transition amplitude as complex/probability 

amplitude
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1. Quantum States

◼ Case 2: Single-particle spin system
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1. Quantum States

◼ Keynotes
⚫ We have learned to associate a vector space to a quantum system. 

The dimension of this space reflects the amount of basic states of 

the system

⚫ States can be superposed, by adding their representing vectors

⚫ A state is left unchanged if its representing vector is multiplied by 

a complex scalar

⚫ The state space has a geometry, given by its inner product. This 

geometry has a physical meaning: it tells us the likelihood for a 

given state to transition into another one after being measured. 

States that are orthogonal to one another are mutually exclusive
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Review: Lecture 4 (first half)

◼ Basic Quantum Theory

1. Quantum States

➢ Superposition, linear combination

➢ Complex/probability amplitude

➢ Ket vector

➢ Stern-Gerlach experiment, spin states in x/y/z axis

➢ transition amplitude, bra vector

2. Observables and measuring
➢ Principle 1: measurement is represented as linear operator Ω

➢ Principle 2: measurement result are eigenvalues of Ω

➢ Principle 3: Unambiguously distinguishable states are orthogonal vectors
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Case 1

Case 2



2. Observables and measuring

◼ Specification of a physical system

⚫ State space: the collection of all states

⚫ Observable set: the physical quantities that can be 

observed in each state

◼ Observable

⚫ A specific question we pose to the system

◼ Measuring

⚫ the process consisting of asking a specific question 

and receiving a definite answer 
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2. Observables and measuring

◼ Classic physics

⚫ the act of measuring would leave the system in whatever state it 

already was, at least in principle 

⚫ the result of a measurement on a well-defined state is predictable, 

i.e., if we know the state with absolute certainty, we can anticipate 

the value of the observable on that state 

◼ Quantum physics

⚫ systems do get perturbed and modified as a result of measuring 

them 

⚫ only the probability of observing specific values can be calculated: 

measurement is inherently a nondeterministic process 
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2. Observables and measuring

◼ Principle 1

⚫ The observable or measurable quantities of 

quantum mechanics are represented by linear 

operators . 

➢ In fact, must also be Hermitian (see it later)
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2. Observables and measuring

◼ Principle 2

⚫ The possible results of a measurement are the 

eigenvalues of the operator that represents the 

observable. 

⚫ The collapsed state is the related eigenvector of 

the operator that represents the observable

⚫ If the system is in the eigenstate     , the result 

of a measurement is guaranteed to be     .
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2. Observables and measuring

◼ Principle 3

⚫ Unambiguously distinguishable states are

represented by orthogonal vectors.

➢ Inner product of two states is a measure of the 
inability to distinguish them with certainty 
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2. Observables and measuring

◼ Observable operator must be Hermitian

⚫ Reason 1: since the result of an experiment must 

be a real number, the eigenvalues of an operator 

must also be real 

⚫ Reason 2: the eigenvectors that represent 

unambiguously distinguishable results must have

different eigenvalues, and must also be orthogonal.

⚫ These conditions are sufficient to prove that 

must be Hermitian (try to prove it! Bonus!)
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2. Observables and measuring

◼ Case 1: positions on line

⚫ Observable is position 

⚫ 's operator

⚫ acts on basic states
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Principle 1: observable is Hermitian
Principle 2: eigen-value and –vector
Principle 3: exclusive states are orthogonal



2. Observables and measuring

◼ Case 2: Single-particle spin system

⚫ z-axis spin operator
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Principles 2 and 3 Eigenvectors and their eigenvalues Hermitian operator



2. Observables and measuring

◼ Case 2: Single-particle spin system

⚫ x-axis spin operator

⚫ y-axis spin operator
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2. Observables and measuring

◼ Some truths about operator

⚫ Operators are the things we use to calculate 

eigenvalues and eigenvectors 

⚫ Operators act on state-vectors (which are 

abstract mathematical objects), not on actual 

physical systems 

⚫ When an operator acts on a state-vector, it 

produces a new state-vector
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2. Observables and measuring

◼ A common misconception about the operator

⚫ When a measurement operator acts on a state-

vector, it produces a new state-vector, but that 

operation is in no way the same as acting on the 

state with the operator 

➢ The latter means a state transition

➢ The former means a state collapse            (only valid 

when        is the eigenvector of      )
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感谢弘毅学堂2020级王骏峣同学指出此处“then”->“the”的书写错误



2. Observables and measuring

◼ A common misconception about the operator

⚫ Example

➢ Observation will not leave the system in superposition, 

the measurement result is either +1 in      or -1 in 

➢ The above result allows us to calculate the probabilities 

of each possible outcome of the measurement
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2. Observables and measuring

◼ Principle 4

⚫ If is the state-vector of a system, and the 

observable     is measured, the probability to 

observe value is 
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2. Observables and measuring

◼ The expected value of observing
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Principle 2



2. Observables and measuring

◼ Proof sketch
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2. Observables and measuring

◼ Proof sketch
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2. Observables and measuring

◼ Proof sketch
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2. Observables and measuring

◼ Proof sketch
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2. Observables and measuring

◼ The expected value of observing
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remember:



2. Observables and measuring

◼ The expected value of observing
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2. Observables and measuring

◼ What happens after measuring?

⚫ Get an answer     with probability 

⚫ The system transitions to the corresponding 

eigenvector 
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2. Observables and measuring

◼ What happens after measuring?

⚫ Get an answer 𝜆

⚫ The system transitions to the corresponding 

eigenvector 

◼ What is going to happen if we conduct the 
same measurement immediately thereafter?

⚫ Exactly the same answer, and stay where it is
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2. Observables and measuring

◼ How about multiple observing?

⚫ Order matters

◼ Experiment: light passing through 

polarization sheet
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2. Observables and measuring

◼ How about multiple observing?

⚫ Order matters

◼ Experiment: light passing through 

polarization sheet
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2. Observables and measuring

◼ Keynotes

⚫ Observables are represented by Hermitian operators. The result of 

an observation is always an eigenvalue of the Hermitian.

⚫ The end state of the measurement of an observable is always one 

of its eigenvectors

⚫ The probability for an initial state to collapse into an eigenvector 

of the observable is given by the length squared of the projection 

⚫ The expression          represents the expected value of observing    

on     

⚫ When we measure several observables, the order of 

measurements matters (because observation will change the state)
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3. Dynamics

◼ Principle 5

⚫ The evolution of a quantum system (that is not 

a measurement) is given by a unitary operator 

or transformation 

➢
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State of the 
system at time t

a unitary matrix that 
represents a unitary operator 

State of the 
system at time t+1



3. Dynamics

◼ Features

2024/4/2 《Quantum Computing》 57



3. Dynamics

◼ The process of quantum computing

⚫ Prepare an initial state

⚫ Apply a sequence of unitary operators to the state

⚫ Measure the output and get a final state
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3. Dynamics

◼ Schrödinger equation

⚫ is the Hamiltonian of the system
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3. Dynamics

◼ Keynotes

⚫ Quantum dynamics is given by unitary transformations

⚫ Unitary transformations are invertible; thus, all closed 

system dynamics are reversible in time (as long as no 

measurement is involved)

⚫ The concrete dynamics is given by the Schrödinger 

equation, which determines the evolution of a quantum 

system whenever its Hamiltonian is specified

2024/4/2 《Quantum Computing》 60



Conclusion

1. Quantum States

➢ Complex/probability/transition amplitudes

2. Observables & Measuring

➢ The observables are represented by Hermitian matrices 

➢ The possible results of a measurement are the eigenvalues of the 
observable matrices. If the system is in the eigenstate, the measurement 
result is guaranteed to be the related eigenvalue

➢ Unambiguously distinguishable states are represented by orthogonal 
vectors

➢ Observing probability is the modulus square of the probability amplitude

3. Dynamics

➢ The evolution of a quantum system is given by a unitary matrix 
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